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Abstract The characterization and construction of
genetic diversity panels provide valuable information
for developing germplasm conservation strategies
and applying advanced breeding techniques. Thus,
we performed analysis of diversity and genetic struc-
ture in Cocos nucifera L. with a collection of dwarf
and tall accessions belonging to the International
Coconut Genebank for Latin America in the Carib-
bean. The collection comprises six dwarf accessions
(represented by 36 individuals) and six tall (repre-
sented by 48 individuals). The analysis of cluster-
ing and DAPC performed from a set of 4044 SNP
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markers showed the existence of three clusters, one
of which was formed exclusively by all dwarf coco-
nut accessions. The tall accessions were separated
into two distinct clusters, one formed by accessions
from regions bathed by the Pacific Ocean (Southeast
Asia and Oceania) and another formed by accessions
from regions bathed by the Atlantic Ocean (Brazilian
coastline and West Africa). The analysis allowed us
to observe that the cluster formed by the accessions
of dwarf coconut is closer genetically to the cluster
formed by the accessions of tall coconut from the
Pacific than the others from the Atlantic. Both groups
presented similar genetic diversity (GD) values, 0.25
and 0.26, respectively. The inbreeding coefficient (F)
revealed the presence of greater heterozygosity than
expected in the dwarf coconut accessions and the
inbreeding in the tall accessions. Consequently, we
provide important information for maintaining those
accessions in the germplasm bank and for future
implementation of genomic-wide association studies
(GWAS) and genomic selection (GS) with the evalu-
ated accessions.

Keywords Cocos nucifera L. - Genetic variability -
Genetic base - Population structure
Introduction

The coconut palm (Cocos nucifera L.) is a perennial,
diploid palm tree (2n=32) with an estimated genome
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size of 2.42 Giga base pairs (Xiao et al. 2017). It is
a source of carbohydrates, vitamins, water, oil, and
fiber and is used in construction and building, includ-
ing furniture. Such versatility makes the coconut
palm known as the tree of life (Rajesh et al. 2015;
Yang et al. 2021). In addition to its various forms of
human use, the coconut palm, which occurs along
coastal regions of numerous tropical islands, plays a
key role in maintaining the ecosystem of these islands
(Rajesh et al. 2015).

In 2021, the five largest producers of dried coconut
worldwide were Indonesia, the Philippines, India, Sri
Lanka, and Brazil (FAOSTAT 2023). It is noted that
the main world producers are developing countries,
where the crop contributes substantially to the econ-
omy, especially the top three in the ranking, which
together, in 2021, moved more than 258 million dol-
lars in exports, which corresponds to approximately
64% of all global revenue generated by the coconut
exports (FAOSTAT 2023).

The coconut palm is the only species of the genus
Cocos and is commonly separated into two groups
of varieties: the dwarf coconut palm (Nana), self-
pollinated, and the tall coconut palm (Typica), which
is predominantly cross-pollinated (allogamous). The
tall coconut is believed to have emerged on islands
in the eastern Pacific and dispersed naturally by sea
currents (Clement et al. 2013). On the other hand, the
dwarf variety would have evolved from the tall, with
great influence of human selection for traits of inter-
est (Perera et al. 2000; Dasanayaka et al. 2009).

The cultivation of the tall coconut is practiced
mainly by small farmers. This variety has rapid
growth and a long vegetative phase, with the begin-
ning of fruit production between five and seven years
after planting and in Brazil, with up to 80 fruits/plant/
year (Ribeiro et al. 2012), which are destined mainly
for the production of dry coconut and supply the agro-
industrial sector. Conversely, the dwarf coconut is the
variety most exploited in Brazil to produce coconut
water, being more demanding concerning soil and cli-
mate conditions, with slow vegetative growth and the
beginning of fruit production between two and three
years after planting, producing between 150 and 200
fruits per year per plant (Ribeiro et al. 2012), which
are intended mainly for the consumption of coconut
water in natura.

With the marked climate change caused by
advancing global warming, scientists are redoubling
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their attention on the species grown for human food
and the stability in growing these species in the face
of drastic climate change (Henry 2014). The coco-
nut palm is one of the important species for human
nutrition and, consequently, the target of numerous
genetic research efforts worldwide. Germplasm banks
conserve sources of genes that can define the crop’s
success in the face of climate change and its conse-
quences. Characterizing the diversity and genetic
structure of the accessions conserved in germplasm
banks is extremely important for monitoring diver-
sity, allowing breeders enough time and information
to develop and apply strategies for maintaining and
amplifying the diversity present in the bank and to
exploit this diversity in breeding programs.

Some studies have already been conducted to char-
acterize the diversity and genetic structure of coco-
nut accessions conserved in the International Coco-
nut Genebank for Latin America and the Caribbean
(ICG-LAC) with morphological markers (Sobral
et al. 2018, 2019) and microsatellite markers (Loiola
et al. 2016). Other work has characterized tall coco-
nut palm’s structure and genetic diversity (Ribeiro
et al. 2013; Loiola et al. 2016) and dwarf coconut
palm (Azevedo et al. 2018; Santos et al. 2020) popu-
lations located in Brazil.

Studies of genetic diversity and population struc-
ture performed with SNPs markers are becom-
ing increasingly frequent thanks to the robustness
of the results generated by the markers (Fischer
et al. 2017) when large sets of marks are analyzed,
the cheapening and democratization of access to
sequencing platforms and advances in bioinfor-
matics (Li et al. 2017). SNPs markers provide rel-
evant information with high reliability regarding
the genetic variability of the germplasm bank of a
species and how this variability is structured, and
are a direct platform for the application of mod-
ern breeding techniques. Among these tools, one
can mention genomic selection (Bernardo 1994;
Meuwissen et al. 2001), which has great potential
for reducing the selection cycle, which has a great
impact, especially for perennial species, allow-
ing the shortening of generations and enabling the
selection of plants still at a reduced size and before
fruiting (Kainer et al. 2015; Iwata et al. 2016; Leb-
edev et al. 2020). For example, GS application pro-
moted a 50% reduction of selection in Coffea ara-
bica (Sousa et al. 2019), Eucalyptus (Grattapaglia
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and Resende 2011), and Pinus taeda (Labedev et al.
2020). In addition to reducing the breeding cycle,
the use of GS in perennial species promotes savings
in physical space and the cost of maintenance in tri-
als since superior genotypes are selected early, and
all efforts are focused on the selected individuals
(Kainer et al. 2015; Sousa et al. 2019; Fritsche-Neto
et al. 2012).

Another tool of great importance is the GWAS,
which assists in discovering genes related to adap-
tive traits of abiotic and biotic stress, directly
impacting the repertoire of genetic tools avail-
able to breeders in dealing with climate dynamics.
Knowledge of population structure is of paramount
importance in performing GWAS since the exist-
ence of subpopulations in a diverse population can
lead to the false association of genetic markers to a
phenotype, the association being only a variation in
frequency in the marker among some more closely
related individuals (Tibbs Cortes et al. 2021). Char-
acterizing the genetic diversity and structure present
in germplasm banks of crop species is critical, as it
provides the necessary basis for decisions such as
selecting parents to be used in crosses that give rise
to improved varieties (Park et al. 2021).

Both tools (GS and GWAS) have their applica-
tion enhanced by the availability of well-charac-
terized panels with broad genetic diversity and the
identification and understanding of the population
structure and linkage disequilibrium in the acces-
sions. The characterization and construction of
genetic diversity panels from SNPs markers have
made a great impact in conducting associative
genetic studies in major crops such as barley (Ros-
toks et al. 2006), maize (Yan et al. 2009), wheat
(Wiirschum et al. 2013) and rice (McCouch et al.
2016). Fruit species of great global importance have
had germplasm bank accessions characterized, and
relevant information has been made available for
crop improvement programs such as grape (Ema-
nuelli et al. 2013), peach (Micheletti et al. 2015),
apple (Urrestarazu et al. 2016), pear (Li et al. 2019)
and mango (Kuhn et al. 2019), for example. Work
such as the above, with a large set of SNPs mark-
ers, provides valuable information for developing
germplasm conservation strategies and applying
advanced breeding techniques. In this context, this
study aimed to perform the genomic and popula-
tion characterization of a diversity panel of dwarf

and tall coconuts and make its data available to the
scientific community in order to boost studies with
the species.

Material and methods
Plant material

The study population consisted of six accessions
(36 plants) of dwarf and six accessions (48 plants)
of tall coconut from the ICG-LAC (International
Coconut Genebank for Latin America and the Carib-
bean), located in Aracaju-SE, Brazil, and maintained
by the Brazilian Agricultural Research Corporation
(EMBRAPA). The plants selected (Table 1) among
the accessions belonging to a working collection orig-
inating from the IGC-LAC are promising accessions
regarding genetic gains and agronomic traits of inter-
est to farmers.

Genomic characterization

In 2019, DNA was submitted to the University of
Wisconsin-Madison Biotechnology Center. DNA
concentration was verified using the Quant-iT™ Pico-
Green® dsDNA kit (Life Technologies, Grand Island,
NY). Libraries were prepared as in Elshire et al.
(2011) with minimal modification; in short, 150 ng of

Table 1 List of the dwarf and tall coconut accessions used in
the study

Code  Accessions Origin N
BYDG Brazilian yellow dwarf—gra-  Brazil 4
mame
MYD  Malayan yellow dwarf Malaysia 6
CRD  Cameroon red dwarf Cameroon 12
BRDG Brazilian red dwarf—gra- Brazil 4
mame
MRD  Malayan red dwarf Malaysia 5
BGDJ  Brazilian green dwarf—jiqui ~ Brazil 5
BRTPF Brazilian tall—praia do forte ~ Brazil 6
WAT  West African tall Cote d’Ivoire 4
PYT Polynesian tall Tahiti 8
RIT Rennell islands tall Solomon Islands 12
TONT Tonga tall Tonga 9
VTT  Vanuatu tall Vanuatu 9

The number of plants of each accessory is represented by N
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DNA was digested with ApeKI (New England Bio-
labs, Ipswich, MA), after which barcoded adapters
amenable to [llumina sequencing were added by liga-
tion with T4 ligase (New England Biolabs, Ipswich,
MA). Finally, 96 adapter-linked samples were pooled
and amplified to provide library quantities amenable
for sequencing, and adapter dimers were removed by
SPRI bead purification. The quality and quantity of
the finished libraries were assessed using the Agilent
Bioanalyzer High Sensitivity Chip (Agilent Tech-
nologies, Inc., Santa Clara, CA) and Qubit® dsDNA
HS Assay Kit (Life Technologies, Grand Island, NY),
respectively. Libraries were sequenced, targeting 250
million reads on a NovaSeq6000 (Illumina Inc.).
Images were analyzed using the standard Illumina
Pipeline, version 1.8.2.

Plants were sequenced and genotyped via GBS
(Genotyping by Sequencing) by the University of
Wisconsin on the Illumina platform. SNP calling
was performed based on the reference genome of the
dwarf green coconut palm cultivar Catigan (CATD)
(NCBI—QRFJ00000000.1). The SNPs markers were
filtered using the snpReady package (Granato et al.
2018). Only SNPs with a minimum allele frequency
(MAF) of 5% and a call rate of 95% were selected.
In the filtering performed for lost data, no individu-
als with a percentage of lost data greater than 30%
were identified. Lost data were imputed using the kin-
ship method. The markers were also filtered for the
LD (Linkage Disequilibrium) parameter, the LDs
between markers were calculated between 100 kbp
intervals from the correlation method, and the 99%
threshold was used for filtering the markers.

Statistical-genetic analysis

The genetic structure in the population under study
was evaluated based on principal component analysis,
genetic distance, and the construction of dendrograms
to identify clusters. The analyses were performed
considering all individuals as a single population and,
in a second scenario, considering two distinct groups,
a group formed by the accessions of the dwarf variety
and a second group with the tall variety. The genetic
diversity was evaluated from parameters such as
expected and observed heterozygosity, PIC (polymor-
phism information content), Nei’s genetic diversity,
effective population size, and endogamy coefficient.
Diversity analyses were generated between brands,
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genotypes, and populations with the snpReady pack-
age (Granato et al. 2018).

Genetic structure analyses were performed using
DAPC (Principal Component Discriminant Analysis)
(Jombart et al. 2010) and dendrogram construction.
The DAPC aims to identify groups based on genetic
structuring optimally by reducing the complexity
of the data in principal components. The number of
groups was not defined before the analysis was per-
formed and was calculated by the K-means method,
where several values of k (groups) and several clus-
ters are tested using the Bayesian Information Crite-
rion (BIC). The results are provided in a curve of BIC
values as a function of k, where the optimal value of
groups is taken as the value at which the curve shows
the most pronounced change in behavior. Cluster
analyses were performed from phylogenetic trees
constructed by the Neighbor-Joining method, with-
out rooting, generated based on Nei (1972) genetic
distance with the aid of the ape package (Paradis and
Schliep 2019).

Results
Genetic structure

After calling SNPs, a total of 103,057 markers were
obtained. With the application of the established
parameters for filtering of marks, 4,044 SNPs mark-
ers were retained, with which the subsequent analyses
were performed. The DAPC analysis was performed
without the prior definition of the number of clusters.
The number of clusters that best explain the data was
obtained from the find clusters function by select-
ing 20 PCs. It was possible to observe that, although
the lowest BIC value was obtained with K=7, from
K =3, the behavior of the line changed dramatically,
and the number of clusters was used for the allocation
of the accessions (Fig. 1). The analyses performed
from the additivity genetic matrix and the dendro-
grams generated also served as a basis for identifying
the number of clusters that best explain the distribu-
tion of the accessions.

In the scatterplot generated from the DAPC analy-
sis, the three clusters identified are distributed in an
isolated manner, without overlap between clusters,
reinforcing the genetic divergence between them
(Fig. 2).
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Fig. 1 Number of clusters
(K) identified based on
BIC. The accessions were

Value of BIC
versus number of clusters

optimally clustered with the
value of K=3

BIC
620 630 640 650 660 670 680
L

Number of clusters

Fig. 2 Scatter plot of the
12 accessions (84 plants) of
dwarf and tall coconut, gen-
erated by Principal Compo-
nent Discriminant Analysis
(DAPC), from the set of
4044 SNPs. The DAPC

A eigenvalues

PCA eigenvalues

ll

analysis retained 35 princi- e
pal components (PCs) and
two discriminant functions
to evaluate the relationship
between clusters

The distribution of the coconut accessions in the
DAPC analysis was similar to the distribution in the
dendrograms constructed from the Euclidean dis-
tance and the Jaccard coefficient. All dwarf coconut
accessions formed the first cluster (in bold). The
tall coconut accessions, in turn, were separated into
two clusters. A second cluster (in italic) was formed
by accessions from the WAT and BRTPF popula-
tions. Only one of the accessions from the TONT
population was allocated to the second cluster. All
other populations and tall coconut accessions were

allocated to a third cluster, represented by bolditalic
(Table 2).

Based on the DAPC analysis, a bar graph was
generated to identify the probability of group-
ing the accessions to the three identified clusters
(Fig. 3). The analysis allowed the observation of
well-defined groups without mixtures. None of the
accessions showed the probability of grouping with
any other cluster than the one in which the DAPC
analysis allocated them.
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Table 2 Distribution of the accessions in the identified clusters according to group and representative cluster coloration

Group Accessions
Dwarf BYDG MYD CRD BRDG MRD BGDJ
Tall BRTPF WAT PYT RIT TONT vIT

The first cluster is identified in bold, the second in italic, and the third in bolditalic

BYDG Brazilian Yellow Dwarf—Gramame, MAYD Malayan Yellow Dwarf, CRD Cameroon Red Dwarf, BRDG Brazilian Red
Dwarf—Gramame, MRD Malayan Red Dwarf, BGDJ Brazilian Green Dwarf—lJiqui, BRTPF Brazilian Tall—Praia do Forte, WAT
West African Tall, PYT Polynesian Tall, RIT Rennell Islands Tall, TONT Tonga Tall, VIT Vanuatu Tall

o _
T |mim2 a3
© |
o
£ o
g <]
s
Qo
2
e
E
&
o
o
o
SRR F e M S S FE R L L SR E R RS R R FER R R R
OAaO0>x>Xx0QEEE30308ggitbEEEEEEEE>>>EEEEEEEEEE
> 14 Q << >0 oo zzz z
%E2§§5o%ooogmm%gﬁﬁgggg‘;‘;‘;‘;;;& n:n:n:n:n:n:eeee
Fig. 3 Bar graph with the probability of grouping for each of the 84 individuals among the three identified clusters (K=3)
Three large clusters were identified in the den- Genetic diversity
drogram generated from the Euclidean distance
(Fig. 4). One group was formed by tall coconut As observed in Table 3, among the three scenarios
plants of the WAT and BRTPF accessions, a second in which the genetic diversity analyses were per-
group with all the dwarf coconut accessions, and a formed, 12 accessions (84 plants) showed higher
third group with the other tall coconut accessions. genetic diversity (GD) than the two groups ana-
In the dendrogram constructed from Jaccard’s lyzed separately, with a value of 0.31. Although
distance, the three-way structuring was maintained the difference is not significant between the two
in conjunction with the distribution of the evaluated groups, the tall coconut accessions had a higher
plants, although minor changes appeared in the den- value for genetic diversity (0.26) compared to the

drogram architecture (Fig. 5).
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The linkage disequilibrium (LD) analysis performed
with the dwarf coconut accessions demonstrated the
presence of large linkage blocks. Although some of
the chromosomes showed low coverage by marks,
it was possible to observe that the general pat-
tern for linkage disequilibrium is repeated among

s similarity index to evaluate the clustering among the 12 accessions (84 plants) of
Linkage disequilibrium

>

5 Dendrogram generated from Jaccard
values for GD, with the general group showing

the highest value for the variable (0.25), followed

by the group formed by tall coconut accessions
(0.22), and the group formed by dwarf coconut trees

The values for PIC showed similar behavior to the
showed the lowest value (0.20).

group formed by dwarf coconut accessions (0.25).

coconut evaluated

Fig.
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chromosomes, showing attenuated initial drop or

almost no drop along the chromosome (Fig. 6).

Table 3 Mean values of genetic diversity parameters evalu-

ated with all accessions, forming only one group (general),
with the dwarf coconut accessions and the tall coconut acces-

sions separately

When observing the linkage disequilibrium analy-
sis from the tall coconut individuals (Fig. 7), it is

possible to observe that these had greater coverage
regarding the distribution of the marks along the

Ne

PIC MAF Ho

GD

General
0.31

chromosomes, except for chromosomes 15 and 17,

0.21 0.22 0.27 152.97

0.25

which presented less coverage. In chromosomes with

Dwarf
0.25
Tall

more dense coverage, verifying the presence of link-
age blocks becomes confusing, as in chromosomes

0.20 0.29 —-0.16 —112.7

0.20

two, three, and six. We can see that the marks have
no defined distribution pattern in chromosomes with

0.22 0.18 0.17 0.35 68.2

0.26

GD Ney genetic diversity, PIC polymorphism content, MAF
minor allele frequency, Ho observed heterozygosity, F inbreed-

ing coefficient, Ne effective population size

less dense coverage, as in chromosomes one, five, and
nine. The drop in linkage disequilibrium, represented

by the red line, showed the same pattern on most

chromosomes.
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expeditions from the Cape Verde islands (Clement

et al. 2013; Loiola et al. 2016).

1Scussion

D

All individuals of dwarf coconut were allocated to
a single group, showing that the individuals have a
narrow genetic base and are strongly related. Santos
et al. (2020), in a study conducted with populations

of dwarf coconut collected in producing areas of Bra-

The structuring observed in tall coconut individuals

is in agreement with the pattern observed in other

Loiola

et al. 2016; Muioz-Pérez et al. 2022) that also iden-

Gunn et al. 2011;
tified structuring into different groups according to

k]

works (Perera et al. 2003;

zil and analysis based on SNP markers, observed the

low differentiation between populations

regions bordering the Atlantic Ocean and regions

in agreement

s

bordering the Pacific Ocean. This evidence suggests

with our results. Gunn et al. (2011) evaluated the

diversity and genetic structure of dwarf and tall coco-

that the domestication of coconut occurred inde-

pendently in the Atlantic and Pacific (Perera et al.

nut individuals throughout the species’ geographical

2003; Gunn et al. 2011). Furthermore, the genetic
proximity observed between individuals from Bra-

dispersion and verified the low genetic differentia-

tion among the dwarf coconut accessions evaluated.

Although they formed a distinct group,

zilian and West African populations reinforces the
theory of the introduction of the coconut palm to

the dwarf

coconut individuals are genetically closer to the tall

the Atlantic Coast of the Americas by Portuguese
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coconut individuals of Pacific origin. This genetic
proximity has also been identified in other works
using molecular markers and reinforces the theory
that the dwarf coconut palm was domesticated in
Southeast Asia (Perera et al. 2003; Gunn et al. 2011;
Muiioz-Perez et al. 2022). In this context, studies of
genetic diversity and structure conducted with the
dwarf and tall coconut varieties together suggest that
the dwarf coconut variety originated from artificial
selection performed on a small group of tall coconuts
and evidence of the presence of greater genetic diver-
sity within the tall coconut variety (Perera et al. 2000,
2003).

The mean value of genetic diversity of the dwarf
coconut individuals evaluated (0.25) is similar to
the results obtained by Jean Nol et al. (2011) and by
Gunn et al. (2011) when they evaluated populations of
dwarf coconut using SSR markers, obtaining a mean
value of genetic diversity around 0.218 and 0.270,
respectively. However, the tall coconut individuals
showed a mean value for genetic diversity of 0.26.
Because they are autogamous plants, the low value of
genetic diversity is within the expected for the dwarf
coconut individuals, the opposite happens with the
tall coconut individuals, where a higher mean value
of genetic diversity would be expected because they
are allogamous plants (Perera et al. 2003; Ribeiro
et al. 2013). Loiola et al. (2016) evaluated 90 individ-
uals of tall coconut corresponding to nine accessions
also from the ICG-LAC, some of them present in this
work (BRTPF, WAT, RIT, TONT, and VTT), through
SSR markers and observed higher mean values of
genetic diversity (0.47). The divergence found in the
diversity values of the tall coconut palm may come
from the artificial selection pressure for the composi-
tion of the working collection evaluated in our work.
Loiola et al. (2016) also identified significant values
for the endogamy coefficient for two of the accessions
evaluated (0.32 and 0.34), one of them also from
WAT, which is similar to the average value found in
this work for the tall coconut individuals (0.35).

Identifying the LD structure contributes to the
rapid identification and selection of alleles of agro-
nomic interest in obtaining improved varieties in
breeding programs (Yan et al. 2009). LD is one of the
diversity parameters that have a direct influence on
the application of GWAS and in making accurate pre-
dictions because of its ability to add bias to associa-
tion analyses (Robbins et al. 2011; Porto-Neto et al.
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2014). Autogamous plants generally show a more
attenuated LD decay pattern due to the predominance
of loci in homozygosity and the presence of large
linkage blocks throughout the genome, reducing the
frequency of recombination events (Vos et al. 2017).
We could observe this pattern in the LD analysis per-
formed with the dwarf coconut individuals, predomi-
nantly autogamous plants. Gene recombination events
typically occur more frequently in allogamous spe-
cies, which is reflected in the rapid drop in the link-
age disequilibrium curve in these species (Vos et al.
2017). Significant estimates of linkage disequilibrium
in a given population indicate the presence of evolu-
tionary pressure on the population, such as inbreed-
ing, gene flow, genetic drift, mutation, and natural
selection (Zhu et al. 2015). We observed that tall
coconut individuals showed a pattern of LD decay
that can be considered a faint decline, considering
that tall coconut individuals are allogamous plants. It
may be related, as well as the low values presented for
the GD index and high values of the inbreeding coef-
ficient, to genetic drift mechanisms acting on these
individuals. Finally, significant estimates of link-
age disequilibrium in a given population indicate the
presence of evolutionary pressure on that population,
such as inbreeding, gene flow, genetic drift, mutation,
and natural selection (Zhu et al. 2015).

For genomic prediction, the models are developed
from a set of genotyped and phenotyped individuals,
which form a training population (TP), and applied
to the breeding population, with the presence of indi-
viduals or offspring from the training population, to
obtain the estimated breeding values of the individu-
als in the breeding population (Desta and Ortiz 2014;
Crossa et al. 2017; Xu et al. 2020). With the model,
it is possible to rank individuals for a trait of interest
without the need for knowledge of the phenotype of
these individuals, using only genotypic data and Men-
delian sampling of offspring to perform the estimates
of breeding values in the target population (Kwong
et al. 2017). Selection based only on genotypic data
can be performed in the early stages of development,
accelerating the breeding program and promoting the
increment of annual gain from the shortening of the
crop cycle (Xu et al. 2020).

The existence of genetic diversity for selection and
the composition of the training population and valida-
tion population has a direct influence on the accuracy
of genomic prediction, using a genetically divergent



Genet Resour Crop Evol (2024) 71:721-733

731

training population concerning the validation popula-
tion can cause overestimated accuracy values (Wray
et al. 2013). Therefore, structuring between popula-
tions is important in genomic selection studies and
directly influences the composition of the training
population (Guo et al. 2014; Isidro et al. 2015; Ola-
toye et al. 2020).

Our work evidences the presence of genetic struc-
ture among the tall coconut individuals evaluated and
the genetic differentiation among the dwarf and tall
coconut individuals. We also provide relevant infor-
mation on the parameters of genetic diversity that
will assist in curating the germplasm bank and in the
maintenance and expansion of this diversity from tar-
geted crosses based on the genetic structure observed.
We make available here new information of extreme
importance and usefulness in conducting future work
aimed at the application of advanced quantitative
genetics tools such as GS and GWAS.
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